首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal degradation behavior and kinetic analysisof poly(L-lactide) in nitrogen and air atmosphere
Authors:Ming-Tao RUN  Xin LI  Chen-Guang YAO
Affiliation:Key Laboratory of MedicinalChemistry and Molecular Diagnosis (Ministry of Education), Collegeof Chemistry and Environmental Science, Hebei University, Baoding071002, China;
Abstract:The non-isothermal and isothermal degradation behaviors and kinetics of poly(L-lactide) (PLLA) were studied by using thermogravimetry analysis (TGA) in nitrogen and air atmosphere, respectively. At lower heating rate ((5–10)°C/min), PLLA starts to decompose in air at lower temperature than those in nitrogen atmosphere; however, at higher heating rate ((20–40)°C/min), the starting decomposition temperature in air are similar to those in nitrogen atmosphere, not only showing that PLLA has better thermal stability in nitrogen than in air atmosphere, but also suggesting that the faster heating rate will decrease the decomposition of PLLA in thermal processing. Whether in air or in nitrogen atmosphere, the decomposition of PLLA has only one-stage degradation with a first-order decomposed reaction, suggesting that the molecular chains of PLLA have the similar decomposed kinetics. The average apparent activation energy of non-isothermal thermal degradation (Ēnon) calculated by Ozawa theory are 231.7kJ·mol−1 in air and 181.6kJ·mol−1 in nitrogen; while the average apparent activation energy of isothermal degradation (Ēiso) calculated by Flynn method are 144.0kJ·mol−1 in air and 129.2kJ·mol−1 in nitrogen, also suggesting that PLLA is easier to decompose in air than in nitrogen. Moreover, the decomposed products of PLLA are also investigated by using thermogravimetry-differential scanning calorimetry-mass spectrometry (TG-DSC-MS). In air atmosphere the volatilization products are more complex than those in nitrogen because the oxidation reaction occurring produces some oxides groups.
Keywords:poly(L-lactide) (PLLA)  degradation  kinetics  TG  apparent activation energy   
点击此处可从《材料科学前沿(英文版)》浏览原始摘要信息
点击此处可从《材料科学前沿(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号