首页 | 本学科首页   官方微博 | 高级检索  
     


Spatially resolved X-ray diffraction mapping of phase transformations in the heat-affected zone of carbon-manganese steel arc welds
Authors:John W Elmer  Joe Wong  Thorsten Ressler
Affiliation:(1) the Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, University of California, 94551 Livermore, CA;(2) the Department of Inorganic Chemistry, Fritz-Haber-Institut der MPG, D-14195 Berlin, Germany
Abstract:Phase transformations that occur in the heat-affected zone (HAZ) of gas tungsten arc welds in AISI 1005 carbon-manganese steel were investigated using spatially resolved X-ray diffraction (SRXRD) at the Stanford Synchrotron Radiation Laboratory. In situ SRXRD experiments were performed to probe the phases present in the HAZ during welding of cylindrical steel bars. These real-time observations of the phases present in the HAZ were used to construct a phase transformation map that identifies five principal phase regions between the liquid weld pool and the unaffected base metal: (1) α-ferrite that is undergoing annealing, recrystallization, and/or grain growth at subcritical temperatures, (2) partially transformed α-ferrite co-existing with γ-austenite at intercritical temperatures, (3) single-phase γ-austenite at austenitizing temperatures, (4) δ-ferrite at temperatures near the liquidus temperature, and (5) back transformed α-ferrite co-existing with residual austenite at subcritical temperatures behind the weld. The SRXRD experimental results were combined with a heat flow model of the weld to investigate transformation kinetics under both positive and negative temperature gradients in the HAZ. Results show that the transformation from ferrite to austenite on heating requires 3 seconds and 158°C of superheat to attain completion under a heating rate of 102°C/s. The reverse transformation from austenite to ferrite on cooling was shown to require 3.3 seconds at a cooling rate of 45 °C/s to transform the majority of the austenite back to ferrite; however, some residual austenite was observed in the microstructure as far as 17 mm behind the weld.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号