首页 | 本学科首页   官方微博 | 高级检索  
     


Catalytic behavior of nanostructured sulfated zirconia promoted by alumina: Butane isomerization
Authors:Jung-Hui Wang  Chung-Yuan Mou  
Affiliation:

aDepartment of Chemistry and Center of Condensed Matter Science, National Taiwan University, Taipei 106, Taiwan

Abstract:Promotion of sulfated zirconia with alumina (ASZ) improves its catalytic activities in n-butane isomerization. The activity and stability of the sulfated zirconia catalysts are investigated in three different nanostructures: ASZ supported on MCM-41, ASZ nanoparticles, and Al-promoted mesoporous sulfated zirconia. The increase of activity was determined primarily by the amount of aluminum addition and the temperature of calcination. The remarkable activity and stability of the Al-promoted catalysts are due to an improved distribution of acid sites strength. The Al loadings in all three catalysts can be adjusted so that optimum catalytic activities for butane isomerization could be found. The increase of butane conversion can be as high as 6 times of that in un-promoted SZ catalysts. This is due to an enhanced amount of weak Brønsted acid sites with intermediate strength on the optimal catalysts. For nanoparticle form of sulfated zirconia, the activity is most steady which is related to the optimum distribution of weak Brønsted acid. On the other hand, too much strong Brønsted acid leads to rapid decay of activity because of coking and cracking. The overall reaction mechanism of the isomerization of n-butane over sulfated zirconia was discussed to understand the details in product distribution.
Keywords:Alumina   Sulfated zirconia   Mesoporous zirconia   MCM-41   Nanoparticle   Promoter   Butane   Isomerization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号