首页 | 本学科首页   官方微博 | 高级检索  
     


Measurement and prediction of heat transfer coefficient on ammonia flow boiling in a microfin plate evaporator
Affiliation:1. Institute of Ocean Energy, Saga University, 1-48 Hirao, Kubara-aza, Yamashiro-cho, Imari, Saga 849-4256, Japan;2. Department of Mechanical Engineering, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan;3. Titanium Technology Department, Kobe Steel, Ltd., Shinagawa-ku, Tokyo 141-8688, Japan;1. Graduate Institute of Environmental Engineering, National Central University, Chungli 320, Taiwan;2. Environmental Analysis Laboratory (EAL), Taiwan Environmental Protection Administration (TEPA), Chungli 320, Taiwan;1. Vienna University of Technology, Institute of Mechanics and Mechatronics, Division of Control and Process Automation, Getreidemarkt 9, 1060 Vienna, Austria;2. Liebherr-Transportation Systems GmbH & Co KG, Liebherrstrasse 1, A-2100 Korneuburg, Austria;1. Chemistry Department, Moscow State University, 119991, Moscow, Russia;2. Research Center for Functional Materials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
Abstract:Thermal characteristics of ammonia flow boiling in a microfin plate evaporator are experimentally investigated. Titanium microfin heat transfer surface is manufactured to enhance boiling heat transfer. Longitudinally- and laterally-microfined surfaces are used and those performances are compared. Heat transfer coefficient of microfin plate evaporator is also compared with that of plain-surface plate evaporator. The effects of mass flux, heat flux, channel height, and saturation pressure on heat transfer coefficient are presented and discussed. The experiments are conducted for the range of mass flux (5 and 7.5 kg m?2 s?1), heat flux (10, 15, and 20 kW m?2), channel height (1, 2, and 5 mm), and saturation pressure (0.7 and 0.9 MPa). Heat transfer coefficient is compared with that predicted by available empirical correlations proposed by other researchers. Modified correlations using Lockhart-Martinelli parameter to predict heat transfer coefficient are developed and they cover more than 87% of the experimental data.
Keywords:Evaporation  Heat transfer coefficient  Heat transfer enhancement  Microfin  Ammonia  Titanium  Evaporation  Coefficient de transfert de chaleur  Amélioration du transfert de chaleur  Micro-ailette  Ammoniac  Titane
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号