首页 | 本学科首页   官方微博 | 高级检索  
     


Symmetric Versus Unsymmetric Platinum(II) Bis(aryleneethynylene)s with Distinct Electronic Structures for Optical Power Limiting/Optical Transparency Trade‐off Optimization
Authors:Guijiang Zhou  Wai‐Yeung Wong  Suk‐Yue Poon  Cheng Ye  Zhenyang Lin
Affiliation:1. Department of Chemistry and Centre for Advanced Luminescence Materials, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong (PR China);2. Department of Chemistry, Faculty of Science Xi'an Jiao Tong University, Xi'an 710049 (PR China);3. Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (PR China);4. Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong (PR China)
Abstract:A new series of symmetric and unsymmetric Pt(II) bis(acetylide) complexes of the type D? C≡C? Pt(PBu3)2? C≡C? D (D? Pt? D), A? C≡C? Pt(PBu3)2? C≡C? A (A? Pt? A) and D? C≡C? Pt(PBu3)2? C≡C? A (D? Pt? A) (D, donor groups; A, acceptor groups) are synthesized, and show superior optical power limiting (OPL)/optical transparency trade‐offs. By tailoring the electronic properties of the aryleneethynylene group, distinct electronic structures for these metalated complexes can be obtained, which significantly affect their photophysical behavior and OPL properties for a nanosecond laser pulse at 532 nm. Electronic influence of the ligand type and the molecular symmetry of metal group on the optical transparency/nonlinearity optimization is thoroughly elucidated. Generally, aryleneethynylene ligands with π electron‐accepting nature will effectively enhance the harvesting efficiency of the triplet excited states. The ligand variation to the OPL strength of these Pt(II) compounds follows the order: D? Pt? D > D? Pt? A > A? Pt? A. These results could be attributed to the distinctive excited state character induced by their different electronic structures, on the basis of the data from both photophysical studies and theoretical calculations. All of the complexes show very good optical transparencies in the visible‐light region and exhibit excellent OPL responses with very impressive figure of merit σex/σo values (up to 17), which remarkably outweigh those of state‐of‐the‐art reverse saturable absorption dyes such as C60 and metallophthalocyanines with very poor transparencies. Their lower optical‐limiting thresholds (0.05 J cm?2 at 92% linear transmittance) compared with that of the best materials (ca. 0.07 J cm?2 for InPc and PbPc dyes) currently in use will render these highly transparent materials promising candidates for practical OPL devices for the protection of human eyes and other delicate electro‐optic sensors.
Keywords:donor–  acceptor structure  electronic structures  nonlinear optics  pt(ii) acetylides  Sensors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号