Mechanical properties of teak wood flour‐reinforced HDPE composites |
| |
Authors: | Kamini Sewda S. N. Maiti |
| |
Affiliation: | Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India |
| |
Abstract: | Mechanical properties such as tensile and impact strength behavior of teak wood flour (TWF)‐filled high‐density polyethylene (HDPE) composites were evaluated at 0–0.32 volume fraction (Φf) of TWF. Tensile modulus and strength initially increased up to Φf = 0.09, whereas a decrease is observed with further increase in the Φf. Elongation‐at‐break and Izod impact strength decreased significantly with increase in the Φf. The crystallinity of HDPE also decreased with increase in the TWF concentration. The initial increase in the tensile modulus and strength was attributed to the mechanical restraint, whereas decrease in the tensile properties at Φf > 0.09 was due to the predominant effect of decrease in the crystallinity of HDPE. The mechanical restraint decreased the elongation and Izod impact strength. In the presence of coupling agent, maleic anhydride‐grafted HDPE (HDPE‐g‐MAH), the tensile modulus and strength enhanced significantly because of enhanced interphase adhesion. However, the elongation and Izod impact strength decreased because of enhanced mechanical restraint on account of increased phase interactions. Scanning electron microscopy showed a degree of better dispersion of TWF particles because of enhanced phase adhesion in the presence of HDPE‐g‐MAH. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 |
| |
Keywords: | mechanical properties high‐density polyethylene teak wood flour composites coupling agent crystallinity phase adhesion |
|
|