首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal and mechanical properties of bio-based polymer networks by thiol-ene photopolymerizations of gallic acid and pyrogallol derivatives
Authors:Yuta Uemura  Toshiaki Shimasaki  Naozumi Teramoto  Mitsuhiro Shibata
Affiliation:1.Department of Life and Environmental Sciences, Faculty of Engineering,Chiba Institute of Technology,Narashino,Japan
Abstract:Allylated pyrogallol (A3PG) and acrylated pyrogallol (Ac3PG) as bio-based trienes, and allylated gallic acid (A4GA) and acrylated allyl gallate (Ac3A1GA) as bio-based tetraenes were synthesized from pyrogallol and gallic acid, respectively. Thiol-ene photopolymerizations of the bio-based polyenes and a pentaerythritol-based primary tetrathiol (pS4P) at the allyl/SH ratio of 1/1 produced photo-cured resins (A3PG-pS4P, Ac3PG-pS4P, A4GA-pS4P and Ac3A1GA-pS4P). The FT-IR spectral analysis revealed that thiol-ene reactions of thiol/allyl and thiol/acryloyl groups smoothly proceeded. Gel fractions of acryl-based cured resins were a little higher than those of allyl-based cured resins. The swelling test and dynamic mechanical analysis revealed that GA- and acryl-based cured resins exhibited higher crosslinking densities than PG- and allyl-based cured resins, respectively. A higher order of tan δ peak temperature was Ac3PG-pS4P (48.3 ° C) > Ac3A1GA-pS4P (24.1 ° C) > A4GA-pS4P (22.1 ° C) > A3PG-pS4P (?7.8 ° C). Ac3PG-pS4P displayed the highest 5 % weight loss temperature, tensile strength and tensile modulus among all of the cured resins.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号