首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and characterization of rubbery/glassy blend membranes for CO2/CH4 gas separation
Authors:S. Mosleh  M. R. Mozdianfard  M. Hemmati  Gh. Khanbabaei
Affiliation:1.Department of Chemical Engineering,University of Kashan,Kashan,Iran;2.Chemical Polymeric and Petrochemical Technology Development Research Division,Research Institute of Petroleum Industry (RIPI),Tehran,Iran
Abstract:A series of blend membranes made from the rubbery polyether block amide (Pebax®1657) and a glassy polymer, polyethersulfone (PES) or Matrimid 5218, were fabricated by solution casting with different ratios (10–40 %), in order to combine high permeability of the former with high selectivity of the latter polymer for CO2/CH4 gas separation. The membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and stress–strain tests. These blend membranes showed two distinct T g s, indicating their immiscible nature as confirmed by SEM images. However, weak intermolecular interaction between polymers, as illustrated by the FTIR results, corresponds to some degree to their compatibility and improved mechanical strength, compared to the pure Pebax®. TGA analysis revealed that addition of glassy polymer improved membranes’ thermal stability. Effect of feed pressure on membrane separation, investigated by three different pressures (4, 8, and 12 bar), indicated increased permeability for higher pressures for both CO2 and CH4. Gas separation tests also pointed to improved separation properties of the blend membranes compared to those of the neat polymers, prepared the same way.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号