首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于凸壳算法的SVM集成方法
引用本文:张宏达,王晓丹,白冬婴,刘倞源. 一种基于凸壳算法的SVM集成方法[J]. 计算机工程, 2008, 34(17): 28-30
作者姓名:张宏达  王晓丹  白冬婴  刘倞源
作者单位:空军工程大学导弹学院,三原,713800;空军工程大学导弹学院,三原,713800;空军工程大学导弹学院,三原,713800;空军工程大学导弹学院,三原,713800
基金项目:国家自然科学基金,陕西省自然科学基金,空军工程大学导弹学院研究生学位论文创新基金
摘    要:为提高支持向量机(SVM)集成的训练速度,提出一种基于凸壳算法的SVM集成方法,得到训练集各类数据的壳向量,将其作为基分类器的训练集,并采用Bagging策略集成各个SVM。在训练过程中,通过抛弃性能较差的基分类器,进一步提高集成分类精度。将该方法用于3组数据,实验结果表明,SVM集成的训练和分类速度平均分别提高了266%和25%。

关 键 词:凸壳算法  支持向量机  集成
修稿时间: 

SVM Ensemble Approach Based on Convex-hull Algorithm
ZHANG Hong-da,WANG Xiao-dan,BAI Dong-ying,LIU Jing-yuan. SVM Ensemble Approach Based on Convex-hull Algorithm[J]. Computer Engineering, 2008, 34(17): 28-30
Authors:ZHANG Hong-da  WANG Xiao-dan  BAI Dong-ying  LIU Jing-yuan
Affiliation:(Missile Institute, Air Force Engineering University, Sanyuan 713800)
Abstract:To improve the training speed of Support Vector Machine(SVM) ensemble, this paper proposes a new approach of SVM ensemble using convex-hull algorithm. The approach applies convex-hull algorithm to get from each class the hull vectors and takes these hull vectors as the training dataset for every base-classifier, Bagging method is used to aggregate the base-classifiers. Threshold is set to discard the base-classifiers with weak performance in training the ensemble to further improve the classification accuracy. Experimental results obtained from applying the proposed approach to 3 different datasets indicate that on average it accelerates training by 266% and speeds up classifying by 25%.
Keywords:convex-hull algorithm  Support Vector Machine(SVM)  ensemble
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号