首页 | 本学科首页   官方微博 | 高级检索  
     


Observations of wind turbine wakes and surface roughness effects on wind flow variability
Authors:DL Elliott  JC Barnard
Abstract:Wind data collected at nine meteorological towers at the Goodnoe Hills MOD-2 wind turbine site were analyzed to characterize the wind flow over the site both in the absence and presence of wind turbine wakes. Free-flow characteristics examined were the variability of wind speed and turbulence intensity across the site as a function of wind direction and surface roughness. The nine towers' data revealed that scattered areas of trees upwind of the site caused pronounced variations in the wind flow over the site. At two towers that were frequently downwind of an extensive grove of trees, up to 30% reductions in wind speed and a factor of 2 to 3 increase in turbulence intensity were measured. A substantial increase in the magnitude of the wind gusts, as well as a considerable decrease in the mean wind speed, was observed when a tower was downwind of the trees.Wind turbine wake characteristics analyzed included the average velocity deficits, wake turbulence, wake width, wake trajectory, vertical profile of the wake, and the stratification of wake properties as a function of the ambient wind speed and turbulence intensity. The wind turbine rotor disk spanned a height of 15 m to 107 m. The nine towers' data permitted a detailed analysis of the wake behavior at a height of 32 m at various downwind distances from 2 to 10 rotor diameters (D). The relationship between velocity deficit and downwind distance was surprisingly linear, with average maximum deficits ranging from 34% at 2 D to 7% at 10 D. Largest deficits were at low wind speeds and low turbulence intensities. Average wake widths were 2.8 D at a downwind distance of 10 D. Implications for turbine spacing are that, for a wind farm with a 10-D row separation, array losses would be significantly greater for a 2-D than a 3-D spacing because of incremental effects caused by overlapping wakes. Other interesting wake properties observed were the wake turbulence (which was greatest along the flanks of the wake). the vertical variation of deficits (which were greater below hub height than above), and the trajectory of the wake (which was essentially straight).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号