首页 | 本学科首页   官方微博 | 高级检索  
     


Long-range and short-range oxidative damage to DNA: photoinduced damage to guanines in ethidium-DNA assemblies
Authors:DB Hall  SO Kelley  JK Barton
Affiliation:Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA.
Abstract:Short-range and long-range photoreactions between ethidium and DNA have been characterized. While no DNA reaction is observed upon excitation into the visible absorption band of ethidium, higher-energy irradiation (313-340 nm) leads both to direct strand cleavage at the 5'-G of 5'-GG-3' doublets and to piperidine-sensitive lesions at guanine. This reactivity is not consistent with oxidation of guanine by either electron transfer or singlet oxygen as shown by comparison with reactions of a rhodium intercalator and methylene blue, respectively. By covalently tethering ethidium to one end of a DNA duplex, we demonstrate the presence of two distinct reactions, one short-range and the other long-range. The short-range reaction involves a covalent modification of guanine by ethidium, based upon HPLC analysis of the nucleoside products and studies with ethidium derivatives. The long-range reaction is entirely consistent with oxidation of guanine by DNA-mediated electron transfer. The yield of this electron-transfer reaction is not attenuated with distance; equal yields of guanine damage are observed at a proximal (17 A Et-GG separation) and distal (44 A Et-GG separation) site. These results are quite similar to those previously observed with a covalently tethered rhodium photooxidant and underscore the unique ability of the DNA base stack to facilitate long-range electron transfer so as to effect oxidative damage from a distance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号