首页 | 本学科首页   官方微博 | 高级检索  
     


Stabilization for T-S model based uncertain stochastic systems
Authors:Shaosheng Zhou  Wenyan Ren
Affiliation:a Institute of Information and Control, Department of Automation, Hangzhou Dianzi University, Hangzhou Zhejiang 310018, PR China
b Department of Mechanical Engineering, University of Hong Kong, Hong Kong
Abstract:This paper considers the stabilization problem of a class of uncertain Itô stochastic fuzzy systems driven by a multidimensional Wiener process. The uncertainty modeled in the systems is of the linear fractional type which includes the norm-bounded uncertainty as a special case. The objective is to design a state-feedback fuzzy controller such that the closed-loop system is robustly asymptotically stable under a stochastic setting. By using a stochastic Lyapunov approach, sufficiency conditions for the stability and stabilization of this class of systems are established based on a novel matrix decomposition technique. The derived stability conditions are then employed to design controllers which stabilize the uncertain Itô stochastic fuzzy systems. Two simulation examples are given to illustrate the effectiveness of the approaches proposed.
Keywords:Fuzzy system   Stochastic system   Stochastic stability   Uncertain system   Wiener process
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号