首页 | 本学科首页   官方微博 | 高级检索  
     


Finding multiple induced disjoint paths in general graphs
Authors:Kejia Zhang  Hong Gao
Affiliation:School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
Abstract:In an undirected graph, paths P1,P2,…,Pk are induced disjoint if each one of them is chordless (i.e., is an induced path) and any two of them have neither common nodes nor adjacent nodes. This paper investigates the Maximum Induced Disjoint Paths (MIDP) problem: in an undirected graph G=(V,E), given k node pairs {s1,t1},…,{sk,tk}, connect maximum number of these node pairs via induced disjoint paths. Till now, the only things known about MIDP are: i) it is NP-hard; ii) it is NP-hard even when k=2; iii) it can be solved in polynomial time when k is a fixed constant and the given graph is a directed planar graph (Kobayashi, 2009 [9]). This paper proves that for general k and any ?>0, it is NP-hard to approximate MIDP within m1/2−?, where m=|E|. Two algorithms for MIDP are given by this paper: a greedy algorithm whose approximation ratio is View the MathML source and an on-line algorithm which has a good lower bound.
Keywords:Induced disjoint paths   Graph   Approximation algorithm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号