首页 | 本学科首页   官方微博 | 高级检索  
     

多引擎动物疾病诊断专家系统
引用本文:谭文学,陈洪波,郭国强,王京仁,颜君彪. 多引擎动物疾病诊断专家系统[J]. 计算机工程, 2008, 34(17): 193-195
作者姓名:谭文学  陈洪波  郭国强  王京仁  颜君彪
作者单位:1. 湖南文理学院计算机科学与技术系,常德,415000
2. 湖南文理学院生命科学系,常德,415000
基金项目:湖南省社会科学基金,湖南省重点建设学科(动物学)基金,湖南文理学院基金重点项目,常德市科技特派员专项基金
摘    要:传统疾病诊断专家系统通过单次推理过程进行知识运用,其知识利用率低,结论准确度低且不具备对比度。该文以山羊为例,运用面向对象的知识表示方法对疾病诊断领域知识库进行建模,结合专家训练过程与诊断模型,提出知识库多引擎判决思想,多次牵引知识库运用知识,构造面向对象加权不确定判决和样本匹配判决算法。实验结果表明,多引擎诊断模型提高了知识库数据资源的利用率,改善了诊断准确度,增加了对比度。

关 键 词:样本匹配  加权不确定判决  重权关联因子  知识表示
修稿时间: 

Multi-engine Animal Disease Diagnostic Expert System
TAN Wen-xue,CHEN Hong-bo,GUO Guo-qiang,WANG Jing-ren,YAN Jun-biao. Multi-engine Animal Disease Diagnostic Expert System[J]. Computer Engineering, 2008, 34(17): 193-195
Authors:TAN Wen-xue  CHEN Hong-bo  GUO Guo-qiang  WANG Jing-ren  YAN Jun-biao
Affiliation:(1. Faculty of Computer Science & Technology, Hunan University of Arts and Science, Changde 415000; 2. Faculty of Life Science, Hunan University of Arts and Science, Changde 415000)
Abstract:The traditional disease diagnostic expert system only has a single reasoning process to use knowledge, so that its knowledge utilization is inefficient. Its conclusion has low accuracy and without contrast. This paper makes example of goat, modelings disease diagnostic knowledge base by the use of object-oriented knowledge representation. According to the training process and diagnostic model, it proposes the ideology of multi-engine ruling based on one knowledge base, multi-tract to operate knowledge, constructing the object-oriented weighted uncertain judgments and decisions basis on samples matching algorithm. Experimental results show that multi-engine diagnostic model can improve the utilization rate of data resources in knowledge base, improve the accuracy of diagnosis, increase the contrast.
Keywords:samples matching  weighted uncertain judgments  bigger weight associated factor  knowledge representation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号