首页 | 本学科首页   官方微博 | 高级检索  
     


High improvement in the properties of exfoliated PU/clay nanocomposites by the alternative swelling process
Authors:YW Chen-Yang  YK Lee  YT Chen  JC Wu
Affiliation:a Department of Chemistry, Chung Yuan Christian University, 200 Chung-Pei Road, Chung-Li, Taoyuan County 32023, Taiwan, ROC
b Center for Nanotechnology, Chung Yuan Christian University, 200 Chung-Pei Road, Chung-Li, Taoyuan County 32023, Taiwan, ROC
c R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung-Pei Road, Chung-Li, Taoyuan County 32023, Taiwan, ROC
d Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Chung-Li, Taoyuan County 32023, Taiwan, ROC
Abstract:In this work, a stable de-aggregated solvent-swollen organic modified clay, ALA-MMT, suspension is prepared by an efficient solvent swelling process using a home-made shaking mixer. It is found that the estimated average size of the as-prepared organoclay particles in the suspension is reduced to about 155 nm, which has not been reported before. The X-ray diffraction (XRD) patterns confirm that the d-spacing of the silicate layers of the solvent-swollen ALA-MMT expands from 1.4 nm to about 2.1 nm. The de-aggregated solvent-swollen ALA-MMT suspension is then used with polyurethane (PU) to prepare a series of highly exfoliated and high-organoclay-loading nanocomposites, PU/ALA-MMT. Both the XRD patterns and the TEM photographs of the as-prepared PU/ALA-MMT nanocomposites indicate that the organoclay is uniformly dispersed in the PU matrix with a highly exfoliated morphology structure of up to 7 wt% loading. Meanwhile, the TEM photographs give the first report for PU/clay nanocomposites which are almost completely exfoliated, and ∼1-nm thin silicate nanolayers are homogeneously dispersed in the polymer matrix with a high aspect ratio of 30-100. The thermal, mechanical, and anti-corrosion properties are all tremendously enhanced for the as-prepared nanocomposites. The results obtained for the PU nanocomposite with 7 wt% ALA-MMT loading (PUC7) reveal a 19 °C increment in Tg, a 48 °C increment in T5%, a 248% increase in the tensile strength, and a 123% increase in the elongation. The stainless steel disk (SSD) coated with PUC7 shows the lowest corrosion rate of 2.01 × 10−6 mm/year, which is 469% lower than that of the SSD coated with pure PU. The reinforcements are much greater than the previously reported PU/clay nanocomposites with comparable clay loadings ascribed to the exceptional homogeneity of as-prepared nanocomposites, which are accredited largely to the stable de-aggregated solvent-swollen organoclay suspension generated by the efficient solvent swelling process.
Keywords:Polyurethane  Clay  Nanocomposite
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号