首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic interplay between phase separation and crystallization in a poly(?-caprolactone)/poly(ethylene glycol) oligomer blend
Authors:Wei-Tsung Chuang  U.-Ser. Jeng  Hwo-Shuenn Sheu  Kan-Shan Shih
Affiliation:a Department of Polymer Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
b National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
c School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
Abstract:We have investigated the crystallization effect on the phase separation of a poly(?-caprolactone) and poly(ethylene glycol) oligomer (PCL/PEGo) blending system using simultaneous small-angle light scattering and differential scanning calorimetry (SALS/DSC) as well as simultaneous small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), and DSC (SAXS/WAXS/DSC). When the PCL/PEGo system, of a weight ratio of 7/3, is quenched from a melt state (160 °C) to temperatures below the spinodal point and the melting temperature of PCL (63 °C), the structural evolution observed exhibits characteristics of (I) early stage of spinodal decomposition (SD), (II) transient pinning, (III) crystallization-induced depinning, and (IV) diffusion-limited crystallization. The time-dependent scattering data of SALS, SAXS and WAXS, covering a wide range of length scale, clearly show that the crystallization of PCL intervenes significantly in the ongoing viscoelastic phase separation of the system, only after the early stage of SD. The effect of preordering before crystallization revives the structural evolution pinned by the viscoelastic phase separation. The growth of SAXS intensity during the preordering period conforms to the Cahn-Hilliard theory. In the later stage of the phase separation, the PCL-rich matrix, of spherulite crystalline domains developed due to the faster crystallization kinetics, traps the isolated PEGo-rich domains of a slower viscoelastic separation.
Keywords:Crystallization   Viscoelastic phase separation   Spinodal decomposition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号