首页 | 本学科首页   官方微博 | 高级检索  
     

改进的HMM和小波神经网络的抗噪语音识别
引用本文:肖勇,覃爱娜. 改进的HMM和小波神经网络的抗噪语音识别[J]. 计算机工程与应用, 2010, 46(22): 162-164. DOI: 10.3778/j.issn.1002-8331.2010.22.048
作者姓名:肖勇  覃爱娜
作者单位:中南大学 信息科学与工程学院,长沙 410083
摘    要:通过MFFC计算出的语音特征系数,由于语音信号的动态性,帧之间有重叠,噪声的影响,使特征系数不能完全反映出语音的信息。提出一种隐马尔可夫模型(HMM)和小波神经网络(WNN)混合模型的抗噪语音识别方法。该方法对MFCC特征系数利用小波神经网络进行训练,得到新的MFCC特征系数。实验结果表明,在噪声环境下,该混合模型比单纯HMM具有更强的噪声鲁棒性,明显改善了语音识别系统的性能。

关 键 词:隐马尔可夫模型  小波神经网络  鲁棒性  特征系数
收稿时间:2009-01-09
修稿时间:2009-4-13 

Noise robust speech recognition based on improved hidden Markov model and wavelet neural network
XIAO Yong,QIN Ai-na. Noise robust speech recognition based on improved hidden Markov model and wavelet neural network[J]. Computer Engineering and Applications, 2010, 46(22): 162-164. DOI: 10.3778/j.issn.1002-8331.2010.22.048
Authors:XIAO Yong  QIN Ai-na
Affiliation:College of Information Science and Technology,Central South University,Changsha 410083,China
Abstract:The feature coefficients based on MFCC are not fully reflecting speech information as a result of speech signal movement and overlap of frames, especially noisy effect.A new method for noise robust speech recognition based on a hy- brid rnodel of Hidden Markov Models(HMM) and Wavelet Neural Network(WNN) is presented.The model trained by this method is used in MFCC coefficients.Experimental results show this model has better noise robustness.
Keywords:Hidden Markov Models(HMM)  Wavelet Neural Network(WNN)  robustness  feature coefficients
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号