首页 | 本学科首页   官方微博 | 高级检索  
     


Adhesion study of pulsed laser deposited hydroxyapatite coating on laser surface nitrided titanium
Authors:HC Man  KY Chiu  KH Wong
Affiliation:a Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
b Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Abstract:Hydroxyapatite (HA) coatings were fabricated by pulsed laser deposition (PLD) on commercially pure titanium which had been subjected to different types of pre-treatment. These include: (i) 60-grit SiC grinding, (ii) 320-grit SiC grinding, (iii) 1-µm diamond paste mirror-finishing, (iv) etching with Knoll solution, and (v) laser surface nitriding followed by selective etching. The HA coatings were pulsed laser deposited at different water-vapor pressures to determine the optimal processing conditions. The nitrided-etched specimen exhibits a three dimensional TiN dendritic network which promotes the adhesion between HA coating and titanium substrate. Among the specimens with different pre-treatments, the adhesion strength of HA is the highest for the nitrided-etched specimen, reaching about twice that for the mirror-finished specimen. Thin-film X-ray diffraction shows a high degree of crystallinity for the PLD deposited HA. According to energy-dispersive X-ray analysis, the Ca/P ratio of the deposited HA reaches an approximate value of 1.7, similar to that of the HA target. Scanning-electron microscopy reveals that the deposited HA is about 4 μm in thickness. Growth of apatite was rapidly induced on the HA coated specimens when immersed in Hanks' solution for 4 days, indicating that the PLD HA coating is highly bone bioactive. This could be partly due to the high wettability of the PLD HA surface.
Keywords:Pulsed laser deposition  Nitriding  Hydroxyapatite  Titanium  Adhesion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号