首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络自适应滤波的低频振荡Prony分析
引用本文:杨芳,马建伟. 基于神经网络自适应滤波的低频振荡Prony分析[J]. 中国农村水电及电气化, 2012, 0(4): 32-37
作者姓名:杨芳  马建伟
作者单位:长沙理工大学电气与信息工程学院,湖南长沙410114
摘    要:针对传统Prony算法在分析低频振荡时对噪声非常敏感的缺点,提出一种基于神经网络自适应滤波和改进Prony算法相结合的电力系统低频振荡分析方法。该方法以广域测量信号作为输入,采用神经网络自适应滤波对低频振荡信号进行滤波预处理,调节性能指标阀值确定滤波效果,并通过改进Prony算法对滤波后的信号进行识别。仿真结果表明,该方法能有效滤除噪声,能较为准确地辨识低频振荡的主导模式。

关 键 词:电力系统  低频振荡  白噪声  神经网络自适应滤波  Prony算法

Prony Analysis of Low Frequency Oscillations Based on Neural Network Adaptive Filtering
YANG Fang,MA Jian-wei. Prony Analysis of Low Frequency Oscillations Based on Neural Network Adaptive Filtering[J]. Rural Hydropower & Electrification in China, 2012, 0(4): 32-37
Authors:YANG Fang  MA Jian-wei
Affiliation:(Electrical and lnformation Engineering Department of Changsha University of Science and Technology, Changsha 410114, China)
Abstract:Because traditional Prony method have difficult to analyze low frequency oscillation signal with noise, a new low frequency oscillation analysis method is proposed ,which integrates neural network adaptive filtering with improved Prony method. Firstly, this method considers the wide area measurement signals as the inputs. Then,the neural network adaptive filter method is used for low fi'equency oscillation signal pre-processing, adjusting the threshold of performance indicators to determine the filtering effect. Finally, the filtered signal is analyzed by improved Prony method. The simulation results show that the method can effectively filter out the noise, can be more accurately identify the dominant low frequency oscillation mode.
Keywords:power system  low frequency oscillation  white noise  neural network adaptive filtering  Prony
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号