首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of reinforcing submicron SiC particles on the wear process of electrolytic NiP coatings
Authors:I R Aslanyan  J -P Celis  L Sh Shuster
Affiliation:1.Ufa State Aviation Technical University,Ufa,Russia;2.Departement Metaalkunde en Toegepaste Materiaalkunde,Katholieke Universiteit Leuven,Leuven,Belgium
Abstract:The effect of submicron silicon carbide frictional strengthening admixtures and heat treatment on the wear process of nickel phosphide coatings obtained by electrolytic deposition is studied. Despite the heat treatment and admixtures of silicon carbides, the wear of the coatings is of abrasion-oxidizing nature; in the case of NiP-SiC composite coatings, the oxide films formed during the friction process do not exhibit the shield effect; these films show a considerable effect on the wear of silicon-free NiP coatings. The silicon carbide admixtures increase the hardness of the electrolytic coatings but prevent the oxide films formed in the frictional process from attaching to the contact surface. Annealing of the coating reduces the wear rate. In the process of heat treatment, the crystalline phase Ni3P is formed in the NiP matrix, increasing the coating hardness. At the same time, in the process of annealing of NiP-SiC composite coatings, the NiP matrix cracks around the silicon carbides. As a result, silicon carbides are extracted in the frictional process and the wear rate of the NiP-SiC composite coating grows.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号