首页 | 本学科首页   官方微博 | 高级检索  
     


Attrition behavior of fine particles in a fluidized bed with bimodal particles: Influence of particle density and size ratio
Authors:Zeeshan Nawaz  Tang Xiaoping  Xiaobo Wei  Fei Wei
Affiliation:1.Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology (FLOTU), Department of Chemical Engineering,Tsinghua University,Beijing,China
Abstract:To process the solid particulates in fluidized bed and slurry phase reactors, attrition is an inevitable consequence and is therefore one of the preliminary parameters for the catalyst design. In this paper, the mechanical degradation propensity of the zeolite catalysts (particles) was investigated in a bimodal distribution environment using a Gas Jet Attrition — ASTM standard fluidized bed test (D-5757). The experimentation was conducted in order to explore parameters affecting attrition phenomena in a bimodal fluidization. In a bimodal fluidization system, two different types of particles are co-fluidized isothermally. The air jet attrition index (AJI) showed distinct increases in the attrition rate of small particles in a bimodal fluidization environment under standard operating conditions, in comparison with single particle. A series of experiments were conducted using particles of various sizes, with large particles of different densities and sizes. Experimental results suggest that the relative density and particle size ratio have a significant influence on attrition behavior during co-fluidization. Therefore a generalized relationship has been drawn using Gwyn constants; those defined material properties of small particles. Moreover, distinct attrition incremental phenomenon was observed during co-fluidization owing to the change in collision pattern and impact, which was associated with relative particle density and size ratios.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号