首页 | 本学科首页   官方微博 | 高级检索  
     


Performance Recovery of Feedback-Linearization-Based Designs
Abstract: We consider a tracking problem for a partially feedback linearizable nonlinear system with stable zero dynamics. The system is uncertain and only the output is measured. We use an extended high-gain observer of dimension $n+1$, where $n$ is the relative degree. The observer estimates $n$ derivatives of the tracking error, of which the first $(n-1)$ derivatives are states of the plant in the normal form and the $n$th derivative estimates the perturbation due to model uncertainty and disturbance. The controller cancels the perturbation estimate and implements a feedback control law, designed for the nominal linear model that would have been obtained by feedback linearization had all the nonlinearities been known and the signals been available. We prove that the closed-loop system under the observer-based controller recovers the performance of the nominal linear model as the observer gain becomes sufficiently high. Moreover, we prove that the controller has an integral action property in that it ensures regulation of the tracking error to zero in the presence of constant nonvanishing perturbation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号