首页 | 本学科首页   官方微博 | 高级检索  
     


Composite robot end effector for manipulating large LCD glass panels
Authors:Je Hoon Oh  Dai Gil Lee and Hyun Surk Kim
Affiliation:

a Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, ME 3221, Gusong-dong, Yusong-gu, Taejon-shi 305-701, South Korea

b Meerae Engineering Corporation, 54-2 Mok-ri, Dongtan-myon, Hwaseong-gun, Kyoungki-do 445-810, South Korea

Abstract:Recently, the design and the manufacture of light robot end effectors with high stiffness have become important in order to reduce the deflection due to the self-weight and weight of glass panel, a part of LCD, as the size of glass panels as well as robot end effectors increases. The best way to reduce the deflection and vibration of end effectors without sacrificing the stiffness of end effectors is to employ fiber reinforced composite materials for main structural materials because composite materials have high specific stiffness and high damping. In this work, the end effector for loading and unloading large glass panels were designed and manufactured using carbon fiber epoxy composite honeycomb sandwich structures. Finite element analysis was used along with an optimization routine to design the composite end effector. A box type sandwich structure was employed to reduce the shear effect arising from the low modulus of honeycomb structure. The carbon fiber epoxy prepreg was hand-laid up on the honeycomb structure and cured in an autoclave. A special process was used to reinforce the two sidewalls of the box type sandwich structure. The weight reduction of the composite end effector was more than 50% compared to the weight of a comparable aluminum end effector. From the experiments, it was also found that the static and dynamic characteristics of the composite end effector were much improved compared to those of the aluminum end effector.
Keywords:LCD glass panel  End effector  Carbon/epoxy composite material  High specific stiffness  Damping  Optimum design  Sandwich structure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号