首页 | 本学科首页   官方微博 | 高级检索  
     

钛合金激光填丝焊缝晶粒生长及相变原位观察
引用本文:徐远钊, 罗玖田, 方乃文, 冯志强, 武鹏博, 黎泉. 基于MS-FCM算法的船体板熔池图像处理技术[J]. 焊接学报, 2024, 45(3): 82-90. DOI: 10.12073/j.hjxb.20231010001
作者姓名:徐远钊  罗玖田  方乃文  冯志强  武鹏博  黎泉
作者单位:1.北部湾大学, 广西船舶数字化设计与先进制造工程技术研究中心, 钦州, 535011;2.广西海洋工程装备与技术重点实验室, 钦州, 535011;3.中国机械总院集团哈尔滨焊接研究所有限公司, 哈尔滨 , 150028
基金项目:国家自然科学基金资助项目(51969001,52261044);国家重点研发计划资助项目(2021YFB3401100);新型钎焊材料与技术国家重点实验室开放课题(SKLABFMT202005);黑龙江省头雁行动计划−能源装备先进焊接技术创新团队资助项目(201916120).
摘    要:

熔池的图像处理与特征提取技术是船舶熔化极气体保护焊(gas metal arc welding, GMAW)智能化焊接质量监控的重要内容,针对船体板GMAW焊接过程中的烟雾大、飞溅多等不稳定特性导致熔池图像采集模糊、边缘提取困难等问题,提出一种基于均值漂移(mean shift, MS)优化模糊C均值聚类(fuzzy c-means, FCM)的图像处理算法. 在优化设计焊接动态视觉传感系统中,以最大化保证图像信息采集清晰度的基础上,利用MS算法获取超像素图像以解决FCM算法对噪声的敏感性,同时在FCM算法上引入加权邻域窗口,以增强MS-FCM算法的鲁棒性,来克服烟雾、飞溅、弧光等噪声影响,进而完成图像分割与边缘提取. 最后,设计出关于FCM、空间约束模糊C均值聚类 (fuzzy c-means with spatial constraints, FCM_S)、加强型模糊聚类(enhanced fuzzy c-means, ENFCM)和模糊局部信息C均值聚类(fuzzy local information c-means clustering, FLICM)算法的4种不同图像处理方法,并与MS-FCM优化模型进行边缘分割效果对比,获取几种方法所提取的熔宽,验证熔池几何特征的提取精度. 结果表明,MS-FCM算法在船舶焊接熔池图像处理方面能有效抑制噪声干扰,平滑信息,达到较高的提取精度.



关 键 词:模糊C均值聚类  均值漂移  图像分割  船体板  熔化极气体保护焊
收稿时间:2023-10-10

In-situ observation of grain growth and phase transformation in laser welding of titanium alloy with filler wire
XU Yuanzhao, LUO Jiutian, FANG Naiwen, FENG Zhiqiang, WU Pengbo, LI Quan. Image processing technology for ship plate melt pool based on MS-FCM algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 82-90. DOI: 10.12073/j.hjxb.20231010001
Authors:XU Yuanzhao  LUO Jiutian  FANG Naiwen  FENG Zhiqiang  WU Pengbo  LI Quan
Affiliation:1.Guangxi Ship Digital Design and Advanced Manufacturing Engineering Technology Research Center, Beibu Gulf University, Qinzhou, 535011, China;2.Guangxi Key Laboratory of Marine Engineering Equipment and Technology, Qinzhou, 535011, China;3.China National Machinery Engineering Corporation Harbin Welding Research Institute Co., Ltd., Harbin, 150028, China
Abstract:The image processing and feature extraction technology of molten pool is an important part of intelligent welding quality monitoring for gas metal arc welding (GMAW) on ships. To address the unstable characteristics of large smoke and spatter during GMAW welding of ship hull plates, such as blurred image acquisition and difficult edge extraction, a fuzzy c-means clustering (FCM) based on mean shift (MS) optimization is proposed The image processing algorithm for In the optimization design of the welding dynamic visual sensing system, on the basis of maximizing the clarity of image information acquisition, the MS algorithm is used to obtain superpixel images to solve the sensitivity of the FCM algorithm to noise. At the same time, a weighted neighborhood window is introduced on the FCM algorithm to enhance the robustness of the MS-FCM algorithm, overcome the effects of smoke, spatter, arc light, noise, etc., and complete image segmentation and edge extraction Finally, four different image processing methods were designed for FCM, fuzzy c-means with spatial constraints (FCM-S), enhanced fuzzy c-means (ENFCM), and fuzzy local information c-means clustering (FLICM) algorithms. The edge segmentation effects were compared with the MS-FCM optimization model to obtain the extracted fusion widths from these methods, Verify the accuracy of extracting geometric features of the molten pool The results show that the MS-FCM algorithm can effectively suppress noise interference, smooth information, and achieve high extraction accuracy in ship welding pool image processing.
Keywords:Fuzzy C-means clustering  mean drift  image segmentation  hull plate  melting gas shielded welding
点击此处可从《焊接学报》浏览原始摘要信息
点击此处可从《焊接学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号