首页 | 本学科首页   官方微博 | 高级检索  
     


An auto-calibration method for spatially and temporally correlated noncircular sources in unknown noise fields
Authors:Jie-xin Yin  Ying Wu  Ding Wang
Affiliation:1.Department of Communication Engineering,Zhengzhou Information Science and Technology Institute,Zhengzhou,People’s Republic of China
Abstract:Angularly dependent gain and phase uncertainties are produced by the combined effects of multiple sensor errors. This paper proposes a direction-finding method for noncircular signals in the presence of angularly dependent gain/phase errors, which utilizes instrumental sensors to achieve auto-calibration and relies on an improved alternating projection procedure. By applying the principle of the extended 2-sided instrumental variable signal subspace fitting algorithm, the proposed method is effective for separating spatially and temporally correlated noncircular sources from the unknown colored (i.e., spatially correlated) noise. Considering that modeling errors of instrumental sensors are frequently encountered in practice, this paper also presents a theoretical derivation for the closed-form expression of the mean square error of the estimation under the influence of modeling errors of instrumental sensors in the first-order analysis. Finally, the results of two series of simulations are demonstrated. The first series of simulations verifies the effectiveness of the proposed auto-calibration method, and shows that noncircularity and temporal correlation of sources are informative for enhancing the calibration performance of our method. The results also prove that the proposed method performs better than the instrumental sensor method when applied to spatially and temporally correlated noncircular sources. Moreover, this performance advantage of our method is more prominent when signal-to-noise ratio is low, or in spatially correlated noise fields. The second series of simulations validates the theoretical prediction, and thus our statistical analysis has a high predictive value for calibration performance of the proposed method under the influence of modeling errors.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号