首页 | 本学科首页   官方微博 | 高级检索  
     


A kinematically compatible framework for cooperative payload transport by nonholonomic mobile manipulators
Authors:M. Abou-Samah  C. P. Tang  R. M. Bhatt  V. Krovi
Affiliation:(1) MSC Software Corporation, Ann Arbor, MI 48105, USA;(2) Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
Abstract:In this paper, we examine the development of a kinematically compatible control framework for a modular system of wheeled mobile manipulators that can team up to cooperatively transport a common payload. Each individually autonomous mobile manipulator consists of a differentially-driven Wheeled Mobile Robot (WMR) with a mounted two degree-of-freedom (d.o.f) revolute-jointed, planar and passive manipulator arm. The composite wheeled vehicle, formed by placing a payload at the end-effectors of two (or more) such mobile manipulators, has the capability to accommodate, detect and correct both instantaneous and finite relative configuration errors. The kinematically-compatible motion-planning/control framework developed here is intended to facilitate maintenance of all kinematic (holonomic and nonholonomic) constraints within such systems. Given an arbitrary end-effector trajectory, each individual mobile-manipulator's bi-level hierarchical controller first generates a kinematically-feasible desired trajectory for the WMR base, which is then tracked by a suitable lower-level posture stabilizing controller. Two variants of system-level cooperative control schemes—leader-follower and decentralized control—are then created based on the individual mobile-manipulator control scheme. Both methods are evaluated within an implementation framework that emphasizes both virtual prototyping (VP) and hardware-in-the-loop (HIL) experimentation. Simulation and experimental results of an example of a two-module system are used to highlight the capabilities of a real-time local sensor-based controller for accommodation, detection and corection of relative formation errors.
Keywords:Composite system  Hardware-in-the-loop  Mobile manipulator  Physical cooperation  Redundancy resolution  Virtual prototyping
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号