首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical study on supersonic combustion of hydrogen and its mixture with Ethylene and methane with strut injection
Authors:Sugang Ma  Fengquan Zhong  Xinyu Zhang
Affiliation:1. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:In this paper, supersonic combustion and flow field of hydrogen and its mixture with ethylene and methane from strut injections in a Mach 2 supersonic flow are studied numerically. The fuel mixture of hydrogen, methane and ethylene represents the major products of pyrolysis of hydrocarbon fuels with large molecules such as kerosene as it acts as coolant and flows through cooling channels and absorbs heat. Detached Eddy Simulation with a reduced kinetic mechanism and steady flamelet model are applied to simulate turbulent combustion. The calculated temperature profiles of hydrogen are compared to the experimental results of DLR supersonic combustor for validation of the present numerical method. The supersonic combustion flows associated with shock waves, turbulent vortices and flame structures are studied. With addition of methane and ethylene, the flame zone moves further downstream of the strut and the maximum flow temperature at chamber exit decreases by 200 K. With analysis of total temperature ratios, it is found that combustion efficiency for hydrogen combustion is 0.91 and it decreases to 0.78 for the fuel mixture. The calculation of ignition delay time and flame speed reveals that fuel mixture of hydrogen and hydrocarbons has considerably larger delay time and smaller flame speed, that contributes to the weakened flame zone and lower combustion efficiency.
Keywords:Detached eddy simulation  Reduced kinetic mechanism  Supersonic combustion  Hydrogen  Hydrocarbon
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号