首页 | 本学科首页   官方微博 | 高级检索  
     


Solvothermal fabrication of MoS2 anchored on ZnIn2S4 microspheres with boosted photocatalytic hydrogen evolution activity
Authors:Chun Liu  Bo Chai  Chunlei Wang  Juntao Yan  Zhandong Ren
Affiliation:School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
Abstract:The MoS2/ZnIn2S4 composites with MoS2 anchored on the surface of ZnIn2S4 microspheres were fabricated by a facile solvothermal method. To clarify the crystal phases, morphologies, chemical compositions, optical properties, and special surface areas of the obtained photocatalysts, the corresponding characterization measurements were performed. The photocatalytic H2 evolution activities of MoS2/ZnIn2S4 composites were evaluated and compared with using lactic acid as sacrificial reagents. The results showed that integrating MoS2 with ZnIn2S4 could remarkably boost the photocatalytic H2 evolution performance and the maximum H2 evolution rate of 201 μmol h?1 was achieved over 1 wt% MoS2 loading on the ZnIn2S4, corresponding to the apparent quantum efficiency (AQE) about 3.08% at 420 nm monochromatic light. The photoelectrochemical tests and photoluminescence spectra (PL) versified that the efficient charge transfer and separation were achieved over MoS2/ZnIn2S4 composite in contrast with single ZnIn2S4, which would significantly benefit the enhancement of photocatalytic H2 activity. This work provides a desired strategy to design and synthesize the visible-light-response photocatalysts with MoS2 as cocatalysts to enhance the photocatalytic activity.
Keywords:Charge transfer and separation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号