首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络-遗传算法优化生物柴油制备工艺
引用本文:尹芳华,李为民,姚超. 基于神经网络-遗传算法优化生物柴油制备工艺[J]. 化工进展, 2008, 27(8)
作者姓名:尹芳华  李为民  姚超
作者单位:江苏工业学院化工系,江苏,常州,213164
基金项目:江苏省科技成果转化专项资金 , 江苏省高校科研成果产业化推进项目 , 常州市工业攻关项目
摘    要:根据生物柴油制备的实验数据,用人工神经网络(ANN)的反向传播(BP)算法建立了生物柴油转化率神经网络预测模型,提出了适宜的人工神经网络拓扑结构,讨论了BP算法中学习速率、动量系数及过拟合现象对网络的影响。实验数据检验表明,ANN方法能准确地关联生物柴油制备工艺条件与转化率的关系,转化率预测平均相对误差为1.917%,复相关系数R为0.9996;该神经网络预测模型用遗传算法优化,得到了最佳生物柴油制备条件。

关 键 词:神经网络  遗传算法  生物柴油  优化

Optimization for biodiesel production technology based on genetic algorithm-neural network
YIN Fanghua,LI Weimin,YAO Chao. Optimization for biodiesel production technology based on genetic algorithm-neural network[J]. Chemical Industry and Engineering Progress, 2008, 27(8)
Authors:YIN Fanghua  LI Weimin  YAO Chao
Abstract:Based on the experiment data from biodiesel production in laboratory, an artificial neural network (ANN) model was developed for predicting the biodiesel conversion by using BP (Back-Propagation) algorithm. The appropriate topology of ANN was obtained. The learning rate, the momentum factor and overfitting phenomena in BP network were discussed. It was shown that the ANN model can correlate and predict the biodiesel conversion accurately after comparing the prediction results with the experiment data. The average prediction error of the biodiesel conversion was 1.917%,and the correlation coefficient R was equal to 0.9996. The ANN model was optimized by incorporating genetic algorithm. Optimal operation conditions of the biodiesel production were obtained by using the ANN model developed.
Keywords:artificial neural network  genetic algorithm  biodiesel  optimization  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号