首页 | 本学科首页   官方微博 | 高级检索  
     


A new implementation of the spectral crystal plasticity framework in implicit finite elements
Affiliation:1. Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA;2. Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;1. Civil Engineering Department, Johns Hopkins University, United States;2. Departments of Civil and Mechanical Engineering, Johns Hopkins University, United States;1. Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany;2. Chemical Engineering and Materials Science, Michigan State University, East Lansing 48824, MI, USA;1. Jo?ef Stefan Institute, SI-1000, Ljubljana, Slovenia;2. Institut de Radioprotection et de Sûreté Nucléaire, B.P. 3, 13115, Saint-Paul-lez-Durance Cedex, France;3. Aix-Marseille Univ, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla, CS 40006, 13453, Marseille Cedex 13, France;4. DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France;1. Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA;2. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;3. Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
Abstract:We present a new implementation of a computationally efficient crystal plasticity model in an implicit finite element (FE) framework. In recent publications, we have reported a standalone version of a crystal plasticity model based on fast Fourier transforms (FFTs) and termed it the spectral crystal plasticity (SCP) model. In this approach, iterative solvers for obtaining the mechanical response of a single crystal of any crystallographic orientation subjected to any deformation mode are replaced by a database of FFTs that allows fast retrieval of the solution. The standalone version of the code facilitates simulations of relatively simple monotonic deformation processes under homogeneous boundary conditions. In this paper, we present a new model that enables simulations of complex, non-monotonic deformation process with heterogeneous boundary conditions. For this purpose, we derive a fully analytical Jacobian enabling an efficient coupling of SCP with implicit finite elements. In our implementation, an FE integration point can represent a single crystal or a polycrystalline material point whose meso-scale mechanical response is obtained by the mean-field Taylor-type homogenization scheme. The finite element spectral crystal plasticity (FE-SCP) implementation has been validated for several monotonic loading conditions and successfully applied to rolling and equi-channel angular extrusion deformation processes. Predictions of the FE-SCP simulations compare favorably with experimental measurements. Details of the FE-SCP implementation and predicted results are presented and discussed in this paper.
Keywords:Spectral methods  Crystal plasticity  Finite element method  UMAT  Texture  Anisotropy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号