首页 | 本学科首页   官方微博 | 高级检索  
     


Design of Compliant Mechanisms: Applications to MEMS
Authors:Sridhar Kota  Jinyong Joo  Zhe Li  Steven M. Rodgers  Jeff Sniegowski
Affiliation:(1) Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109, USA;(2) Intelligent Micromachine Department, Sandia National Laboratories, Albuquerque, New Mexico, 87185-1080
Abstract:Compliant mechanisms are single-piece flexible structures that deliver the desired motion by undergoing elastic deformation as opposed to jointed rigid body motions of conventional mechanisms. Compliance in design leads to jointless, no-assembly (Fig. 1), monolithic mechanical devices and is particularly suited for applications with small range of motions. The compliant windshield wiper shown in Fig. 1 illustrates this paradigm of no-assembly. Conventional flexural mechanisms employ flexural joints that connect relatively rigid links as depicted in Fig. 2. Reduced fatigue life, high stress concentration and difficulty in fabrication are some of the drawbacks of flexural joints. Our focus is on designing compliant mechanisms with distributed compliance which employs flexural links (see Fig. 3) and have no joints (neither pin nor flexural joints) for improved reliability, performance, and ease of manufacture. Distributed compliant mechanisms derive their flexibility due to topology and shape of the material continuum rather than concentrated flexion at few regions. This paper focuses on the unique methodology employed to design jointless mechanisms with distributed compliance. The paper also illustrates a compliant stroke amplification mechanism that was recently designed, fabricated and tested for MEMS application.
Keywords:MEMS  compliant mechanism  topology synthesis  size and shape synthesis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号