首页 | 本学科首页   官方微博 | 高级检索  
     

基于DEMD和模糊熵的滚动轴承故障诊断方法研究
引用本文:孟宗,季艳,闫晓丽. 基于DEMD和模糊熵的滚动轴承故障诊断方法研究[J]. 计量学报, 2016, 37(1): 56-61. DOI: 10.3969/j.issn.1000-1158.2016.01.14
作者姓名:孟宗  季艳  闫晓丽
作者单位:1. 河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
2. 国家冷轧板带装备及工艺工程技术研究中心, 河北 秦皇岛 066004
基金项目:国家自然科学基金 (51575472,51105323);河北省自然科学基金 (E2015203356); 河北省高等学校科学研究计划重点项目(ZD2015049)
摘    要:提出一种基于微分的经验模式分解(DEMD)模糊熵和支持向量机(SVM)相结合的滚动轴承故障诊断方法。首先对信号进行基于微分的经验模式分解,得到若干具有物理意义的本征模函数(IMF)分量,再利用相关度准则对固有模式分量进行筛选,计算所选分量的模糊熵,组成故障特征向量,然后将其作为支持向量机的输入来识别滚动轴承的状态。并将该方法与基于EMD模糊熵和SVM相结合的方法进行比较,实验结果表明该方法对机械故障信号能够更有效准确地进行识别分类。

关 键 词:计量学  故障诊断  滚动轴承  微分经验模式分解  模糊熵  支持向量机  

Rolling Bearing Fault Diagnosis Based on Differential-based Empirical Mode Decomposition and Fuzzy Entroy
MENG Zong,JI Yan,YAN Xiao-li. Rolling Bearing Fault Diagnosis Based on Differential-based Empirical Mode Decomposition and Fuzzy Entroy[J]. Acta Metrologica Sinica, 2016, 37(1): 56-61. DOI: 10.3969/j.issn.1000-1158.2016.01.14
Authors:MENG Zong  JI Yan  YAN Xiao-li
Affiliation:1. Key Lab of Measurement Technology and Instrumentation of Hebei Province, Qinhuangdao, Heibei 066004, China
2. National Engineering Research Center for Eqpt & Tech of Cold Rolling Strip, Qinhuangdao, Heibei 066004, China
Abstract:A comprehensive rolling bearing fault diagnosis method combining differential-based empirical mode decomposition (DEMD) with fuzzy entropy and support vector machine(SVM) is proposed.Firstly, mechanical vibration signal is decomposed with differential-based empirical mode decomposition (DEMD) to obtain a certain number of intrinsic mode functions (IMFs) that have physical meaning. With a mutual relationship rule, the IMF components that have largest correlation coefficients with the original signal are sifted out. The fuzzy entropies of these IMFs are calculated and use as eigenvectors of fault signals, then the eigenvectors are put into SVM to identify the state of the rolling bearing. Compared with the method based on empirical mode decomposition (EMD) combined with fuzzy entropy and SVM, the experimental results show that the method of mechanical failure signals can accurately identify classification effectively.
Keywords:metrology  fault diagnosis  rolling bearing  differential-based empirical mode decomposition  fuzzy entropy  support vector machine  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计量学报》浏览原始摘要信息
点击此处可从《计量学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号