摘 要: | 为有效提高非结构化Web金融文本情感倾向和强度分析的精度,提出了基于语义规则的Web金融文本情感分析算法(SAFT-SR)。该算法基于Apriori算法对金融文本进行属性抽取,构建金融情感词典和语义规则识别情感单元及强度,进而得到文本的情感倾向和强度。实验结果表明,与Ku提出的算法相比,在情感倾向分类方面,算法SAFT-SR情感分类性能良好,提高了分类器的F值、查全率和查准率;在情感强度计算方面,算法SAFT-SR的误差更小,更接近真实评分,证明了SAFT-SR是一种有效的金融文本情感分析算法。
|