首页 | 本学科首页   官方微博 | 高级检索  
     

基于COFI-Tree的N-最有兴趣项目集挖掘算法
引用本文:肖继海,崔晓红,陈俊杰. 基于COFI-Tree的N-最有兴趣项目集挖掘算法[J]. 微机发展, 2012, 0(3): 99-102
作者姓名:肖继海  崔晓红  陈俊杰
作者单位:[1]太原理工大学,山西晋中030600 [2]太原理工大学,山西太原030024
基金项目:山西省自然科学基金资助项目(2007011050)
摘    要:BOMO算法采用递归构造条件子树,在挖掘大数据集时耗时较长,执行效率低,为了解决这一不足,文中给出一种基于COFI-Tree的挖掘N-最有兴趣项目集算法。算法采用COFI-Tree结构,无需递归构造条件子树FP-Tree,在同一时间内只有一个COFI-Tree在内存,并且有效地减少了其运算时间。通过对两种算法进行对比分析,实验结果得出:该算法比BOMO算法程序执行时间明显缩短;在挖掘大数据集时执行效率显著提高,尤其是k〈4时,性能最好。由此可见,改进后的算法是可行有效的。

关 键 词:数据挖掘  关联规则  N-最有兴趣项目集  FP-Tree  COFI-Tree

Mining N-Most Interesting Itemsets Algorithm Based on COFI-Tree
XIAO Ji-hai,CUI Xiao-hong,CHEN Jun-jie. Mining N-Most Interesting Itemsets Algorithm Based on COFI-Tree[J]. Microcomputer Development, 2012, 0(3): 99-102
Authors:XIAO Ji-hai  CUI Xiao-hong  CHEN Jun-jie
Affiliation:1.Taiyuan University of Technology,Jinzhong 030600,China; 2.Taiyuan University of Technology,Taiyuan 030024,China)
Abstract:BOMO algorithm constructs conditional FP-Tree recursively so that it requires more memory and CPU resources.To solve this problem,an algorithm for mining N-most interesting itemsets based on COFI-Tree is presented.This algorithm adopts COFI-Tree.COFI-Tree doesn't need to construct conditional FP-Tree recursively and there is only one COFI-Tree in memory at a time.Experiment shows that the algorithm based on COFI-Tree performs faster than current best algorithm BOMO;The algorithm has good performance for large data set,especially it shows the best when for k value is smaller than 4.This shows that the improved algorithm is feasible and effective.
Keywords:data mining  association rules  N-most interesting itemsets  FP-Tree  COFI-Tree
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号