首页 | 本学科首页   官方微博 | 高级检索  
     


Fast sensitivity-based economic model predictive control for degenerate systems
Affiliation:1. Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway;2. Department of Computer Science, Czech Technical University in Prague, 1200 Praha 2, Czech Republic
Abstract:We present a sensitivity-based nonlinear model predictive control (NMPC) algorithm and demonstrate it on a case study with an economic cost function. In contrast to existing sensitivity-based approaches that make strong assumptions on the underlying optimization problem (e.g. the linear independence constraint qualification implying unique multiplier), our method is designed to handle problems satisfying a weaker constraint qualification, namely the Mangasarian-Fromovitz constraint qualification (MFCQ). Our nonlinear programming (NLP) sensitivity update consists of three steps. The first step is a corrector step in which a system of linear equations is solved. Then a predictor step is computed by a quadratic program (QP). Finally, a linear program (LP) is solved to select the multipliers that give the correct sensitivity information. A path-following scheme containing these steps is embedded in the advanced-step NMPC (asNMPC) framework. We demonstrate our method on a large-scale case example consisting of a reactor and distillation process. We show that LICQ does not hold and the path-following method is able to accurately approximate the ideal solutions generated by an NLP solver.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号