首页 | 本学科首页   官方微博 | 高级检索  
     


Crystallization behavior of α‐cellulose short‐fiber reinforced poly(lactic acid) composites
Authors:Jyh‐Hong Wu  M C Kuo  Chien‐Wen Chen  Chen‐Wei Chen  Ping‐Hung Kuan  Yu‐Jheng Wang  Shu‐Yao Jhang
Affiliation:1. Nano‐Powder and Thin Film Technology Center, Industrial Technology Research Institute, Tainan 70955, Taiwan, Republic of China;2. Department of Materials Engineering, Kun Shan University, Tainan 71003, Taiwan, Republic of China
Abstract:The isothermal crystallization behavior of α‐cellulose short‐fiber reinforced poly(lactic acid) composites (PLA/α‐cellulose) was examined using a differential scanning calorimeter and a petrographic microscope. Incorporating a natural micro‐sized cellulose filler increased the spherulite growth rate of the PLA from 3.35 μm/min for neat PLA at 105°C to a maximum of 5.52 μm/min for the 4 wt % PLA/α‐cellulose composite at 105°C. In addition, the inclusion of α‐cellulose significantly increased the crystallinities of the PLA/α‐cellulose composites. The crystallinities for the PLA/α‐cellulose composites that crystallized at 125°C were 48–58%, higher than that of the neat PLA for ~13.5–37.2%. The Avrami exponent n values for the neat and PLA/α‐cellulose composites ranged from 2.50 to 2.81 and from 2.45 to 3.44, respectively, and the crystallization rates K of the PLA/α‐cellulose composites were higher than those of the neat PLA. The activation energies of crystallization for the PLA/α‐cellulose composites were higher than that of the neat PLA. The inclusion of α‐cellulose imparted more nucleating sites to the PLA polymer. Therefore, it was necessary to release additional energy and initiate molecular deposition. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Keywords:biodegradable  crystallization  differential scanning calorimetry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号