首页 | 本学科首页   官方微博 | 高级检索  
     

个性化服务中基于用户聚类的协同过滤推荐
引用本文:王辉高利军王听忠. 个性化服务中基于用户聚类的协同过滤推荐[J]. 计算机应用, 2007, 27(5): 1225-1227
作者姓名:王辉高利军王听忠
作者单位:[1]河南科技大学电子信息工程学院,河南洛阳471003 [2]洛阳师范学院计算机科学系,河南洛阳471022
基金项目:国家自然科学基金 , 教育部科学技术基金 , 河南省高校杰出科研创新人才工程项目 , 河南省高校青年骨干教师资助项目
摘    要:协同过滤技术被成功地应用于个性化推荐系统中,但随着系统规模扩大,它的效能逐渐降低。针对此缺点,使用了基于用户聚类的协同过滤推荐,根据用户评分的相似性对用户聚类,在此基础上搜索目标用户的最近邻居,从而缩小用户的搜索范围。本文还提出将协同过滤推荐分为类内相似系数计算和产生推荐两个阶段,把相似系数的计算放在离线部分,减少在线推荐的计算量,提高实时响应速度。另对聚类算法初始聚类中心的选取也做了改进。

关 键 词:协同过滤  推荐系统  聚类
文章编号:1001-9081(2007)05-1225-03
收稿时间:2006-11-30
修稿时间:2006-11-30

Collaborative filtering recommendation based on user clustering in personalization service
WANG Hui,GAO Li-jun,WANG Ting-zhong. Collaborative filtering recommendation based on user clustering in personalization service[J]. Journal of Computer Applications, 2007, 27(5): 1225-1227
Authors:WANG Hui  GAO Li-jun  WANG Ting-zhong
Affiliation:1. College of Electronic Information Engineering, Henan University of Scienee and Technology, Luoyang Henan 471003, China; 2. Department of Computer Seienee, Luoyang Normal University, Luoyang Henan 471022, China
Abstract:Collaborative filtering is the most successful technology for building recommendation systems.Unfortunately,the efficiency of this method declines linearly with the number of users and items.A collaborative filtering recommendation algorithm based on user clustering was employed to solve this problem.Users were clustered based on users' ratings on items,then the nearest neighbors of target user can be found in the user clusters most similar to the target user.Based on the algorithm,this paper proposed that the collaborative filtering algorithm should be divided into two stages: to compute the similar coefficient and to produce recommendation.The first stage was done in the off-line phase and thus the computation in the on-line recommendation phase was reduced and the speed of on-line recommendation system was increased.And this paper also improved the initial center point's selection of K-Means clustering algorithm.
Keywords:collaborative filtering   recommendation systems   clustering
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号