首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of selected mathematical models to predict the inactivation of Listeria innocua by pulsed electric fields
Authors:M.F. San Martí  n
Affiliation:Wahington State University, Biological Systems Engineering, 220 LJ Smith Hall, Pullman 99164, USA
Abstract:The inactivation of Listeria innocua ATCC 51742 by pulsed electric fields was investigated at 35, 40 and 45 kV/cm. Results indicate that at treatment times shorter than 37 μs at 40 and 45 kV/cm, and 49 μs at 35 kV/cm, there is a linear relationship between the logarithm of the survivor fraction and the treatment time. However, longer times result in an abrupt increase in the slope of the inactivation curve and in inactivation values greater than six logarithmic cycles. A model based on Weibull's survival function was used to describe microbial inactivation and then compared to a first-order kinetic model. Distribution parameters of Weibull's survival function and kinetic constant for the first-order kinetic model were calculated by fitting experimental data. Calculated mean times for microbial inactivation from Weibull's distribution were 11.55, 8.65 and 5.39 μs at 35, 40 and 45 kV/cm, respectively. The goodness-of-fit between experimental and predicted values was determined using an accuracy factor. The model based on the Weibull survival distribution provided better accuracy factors than first-order kinetics. The model based on Weibull's survival function seems promising for describing survival curves that exhibit concavity.
Keywords:Pulsed electric fields   Listeria innocua   Weibull distribution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号