首页 | 本学科首页   官方微博 | 高级检索  
     

一类非线性离散切换系统基于观测器的指数镇定
引用本文:李莉莉,赵军. 一类非线性离散切换系统基于观测器的指数镇定[J]. 控制理论与应用, 2009, 26(7): 786-790
作者姓名:李莉莉  赵军
作者单位:东北大学,教育部国家流程工业综合自动化重点实验室,辽宁,沈阳,110004
基金项目:国家自然科学基金资助项目(60574013)
摘    要:对一类离散非线性切换系统, 考虑了基于观测器的指数镇定问题. 借助微分中值定理(DMVT), 将非线性切换系统转化为线性参数(LPV)切换系统. 当状态变量不完全可获得时, 基于多Lyapunov函数方法, 给出系统在基于观测器的输出反馈控制器下指数镇定的充分条件. 所设计的滞后切换规则能够避免产生滑动模态. 并且将结果推广到系统方程含有不确定性的情况. 最后, 仿真例子说明了设计方法的有效性.

关 键 词:离散切换系统   多Lyapunov函数   滞后切换规则
收稿时间:2008-01-26
修稿时间:2008-08-18

Observer-based exponential stabilization for a class of discrete-time switched nonlinear systems
Li Li-li and ZHAO Jun. Observer-based exponential stabilization for a class of discrete-time switched nonlinear systems[J]. Control Theory & Applications, 2009, 26(7): 786-790
Authors:Li Li-li and ZHAO Jun
Affiliation:Key Laboratory of Integrated Automation of Process Industry, Ministry of Education, Northeastern Univ., China,Key Laboratory of Integrated Automation of Process Industry, Ministry of Education, Northeastern Univ., China
Abstract:The observer-based exponential stabilization problem is addressed for a class of discrete-time switched nonlinear systems. The differential mean-value-theorem(DMVT) allows transforming the switched nonlinear systems intoswitched linear parameter-varying(LPV) systems. When the states are not completely available for switching and controller design, the multiple Lyapunov functions approach is exploited to derive sufficient conditions for exponential stabilizability via observer-based output feedback. The designed switching law is of the hysteresis switching form which prevents the system from sliding motions. Also, an extension of this method to switched systems with norm-bounded uncertainties is obtained. Finally, a numerical example illustrates the effectiveness of the proposed approach.
Keywords:discrete-time switched systems   multiple Lyapunov functions   hysteresis switching law
本文献已被 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号