首页 | 本学科首页   官方微博 | 高级检索  
     

输流管道弯曲和振动的有限元分析
引用本文:随岁寒,李成.输流管道弯曲和振动的有限元分析[J].动力学与控制学报,2022,20(4):83-90.
作者姓名:随岁寒  李成
作者单位:商丘工学院 机械工程学院, 商丘 476000;常州工学院 汽车工程学院,常州 213032;暨南大学 “重大工程灾害与控制”教育部重点实验室, 广州 510632
基金项目:国家自然科学基金资助项目(11972240),暨南大学“重大工程灾害与控制”教育部重点实验室开放基金(20180930002)资助
摘    要:基于Timoshenko梁理论,利用虚功原理严格地建立了输流管道弯曲和振动的有限元方程.利用加速度合成定理推导了流体横向加速度的表达式,计算了两端简支和悬臂两种边界条件下管道受到重力和流体作用时的挠度和转角,分析了流体流速对其影响.两端简支条件下将预应力效应整合到管道应变能中,并讨论了轴向预应力与弯曲挠度的关系.给出了两种边界条件下管道自由振动的前三阶固有频率与流体流速的关系,分析了两端简支条件下管道轴向预应力对振动固有频率的影响.结果表明:两端简支边界条件下,流体速度增大则挠度和转角相应增大,预应力使得挠度和转角减小;前三阶固有频率随流速增大而减小,预应力增大则导致各阶固有频率增大.悬臂边界条件下,流体速度增大则挠度和转角减小,前三阶固有频率随流速增大而减小.

关 键 词:输流管道,有限元法,弯曲,自由振动,预应力
收稿时间:2020/8/7 0:00:00
修稿时间:2021/10/15 0:00:00

THE FINITE ELEMENT ANALYSIS ON BENDING AND VIBRATION OF THE FLUID-CONVEYING PIPES
Sui Suihan,Li Cheng.THE FINITE ELEMENT ANALYSIS ON BENDING AND VIBRATION OF THE FLUID-CONVEYING PIPES[J].Journal of Dynamics and Control,2022,20(4):83-90.
Authors:Sui Suihan  Li Cheng
Abstract:Based on the Timoshenko beam theory, the finite element equation for bending and vibration of fluid-conveying pipes is derived using the principle of virtual work. The transverse acceleration of fluid is derived using the theorem of acceleration composition. The deflection and slope of the pipe subjected to the combined actions of gravity and fluid under two boundary conditions are obtained, and the influence of fluid velocity on the deflection and slope is analyzed. Under simply supported boundary constraint at both ends the pre-stress effect is transformed to integrate into the strain energy of the pipe, and the relationship between axial pre-stress and bending deflection is studied. The relationships between the first three natural frequencies and the flow velocity of the pipe under the simply supported and cantilever boundary conditions are obtained, and the influence of the axial pre-stress on the natural frequency under the simply supported condition is presented. The results show that under the condition of simply supported boundary, the deflection and slop increase with the increase of fluid velocity, and the deflection and slop decrease with the increase of pre-stress. With the increase of velocity, the first three natural frequencies decrease, while an increase in pre-stress results in higher natural frequencies. For the cantilever boundary condition, the deflection and slope decrease with the increase of fluid velocity, and the first three natural frequencies decrease with increasing flow velocity.
Keywords:
点击此处可从《动力学与控制学报》浏览原始摘要信息
点击此处可从《动力学与控制学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号