首页 | 本学科首页   官方微博 | 高级检索  
     

RBF-CSR方法及其应用于裂解装置建模的研究
引用本文:庄凌,陈德钊,赵伟祥,张红,胡上序. RBF-CSR方法及其应用于裂解装置建模的研究[J]. 高校化学工程学报, 2002, 16(1): 64-69
作者姓名:庄凌  陈德钊  赵伟祥  张红  胡上序
作者单位:浙江大学化学工程与生物工程学系,浙江,杭州,310027
基金项目:国家自然科学基金(20076041)
摘    要:RBF-CSR是在分析RBF-PLS的基础上提出的新方法。它保留了RBF-PLS的优点:采用神经网络的结构,又用数学方法直接求解,免去了ANN冗长的训练过程和其它诸多欠缺。RBF-CSR方法可以在更宽广的空间内寻找最优的网络参数,它所建立的模型具有很强的预报精度和良好的稳定性,又有简洁的解析形式,便于优化等进一步的计算和处理。该方法已成功地应用于裂解装置的建模。

关 键 词:径向基函数 偏最小二乘回归 循环子空间回归 裂解装置 化工过程 RBF-CSR 建模方法
文章编号:1003-9015(2002)01-0064-06
修稿时间:2000-03-20

The Radial Basis Functions-Cyclic Subspace Regression Approach and its Application to Cracker Modeling
ZHUANG Ling,CHEN De-zhao,ZHAO Wei-xiang,ZHANG Hong,HU Shang-xu. The Radial Basis Functions-Cyclic Subspace Regression Approach and its Application to Cracker Modeling[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(1): 64-69
Authors:ZHUANG Ling  CHEN De-zhao  ZHAO Wei-xiang  ZHANG Hong  HU Shang-xu
Abstract:Artificial neural network is a frequently-used modeling method in chemical engineering, especially for problems with complex mechanism. But the training of ANN is difficult. A lot of trouble is generated in the training process such as overfitting, converging to local optimum, etc. A new idea RBF-PLS approach that artificial neural network and regression method are combined for solving the problem was presented by Massart. In this article the RBF-CSR approach was proposed by analyzing RBF-PLS. The approach has the merit of RBF-PLS, i.e. using a structure similar to that of neural network, getting solution by mathematical methods directly, without the tedious training process of ANN and other evoking shortcomings. Finding the optimal coefficient in wider space, RBF-CSR can improve the accuracy and stability of predicted value of model. Thus models created by RBF-CSR were better than that created by RBF-PLS. Moreover the models had a brief analysis formula which was convenient for further processing such as optimization. It was successfully applied to cracker modeling.
Keywords:radial basis function  partial least square regression  cyclic subspace regression  cracker
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号