首页 | 本学科首页   官方微博 | 高级检索  
     

小波变换和RBF网络用于模式法分解重叠色谱峰
引用本文:熊智新,路文初,胡上序. 小波变换和RBF网络用于模式法分解重叠色谱峰[J]. 浙江大学学报(工学版), 2005, 39(4): 516-521
作者姓名:熊智新  路文初  胡上序
作者单位:熊智新(浙江大学 化学工程学系,浙江 杭州 310027) 
路文初(浙江大学 分析测试中心,浙江 杭州 310027) 
胡上序(浙江大学 化学工程学系,浙江 杭州 310027)
摘    要:将小波变换和神经网络相结合,研究色谱数据处理中分解重叠峰的新方法.首先利用小波变换多分辨分析和奇异性检测原理提取重叠色谱峰上的各特征点,构造反映重叠峰形状、位置和高度的5个无因次特征量,然后借助径向基函数(RBF)网络来表达重叠峰中子峰面积比和5个无因次特征量的映射关系,建立分解重叠色谱峰的模式识别模型.实验结果表明,采用训练好的RBF神经网络分解重叠色谱峰,准确度优于传统的垂线分割法,而且可实现对只有一个峰强极大点的肩峰型重叠峰的分解.

关 键 词:小波变换  径向基函数网络  色谱峰分解  模式识别
文章编号:1008-973X(2005)04-0516-06
修稿时间:2004-01-15

Resolution of overlapped chromatographic peaks by pattern recognition based on wavelet transform and RBF networks
XIONG Zhi-xin,LU Wen-chu,HU Shang-xu. Resolution of overlapped chromatographic peaks by pattern recognition based on wavelet transform and RBF networks[J]. Journal of Zhejiang University(Engineering Science), 2005, 39(4): 516-521
Authors:XIONG Zhi-xin  LU Wen-chu  HU Shang-xu
Abstract:A novel method for resolving overlapped peaks with wavelet transform and neural network was proposed. The singularity detection based on multi-resolution analysis of wavelet transform was employed to extract characteristic points on overlapped chromatographic peaks. According to the positions and values of the characteristic points, five characteristic parameters characterizing the shape, position and height of individual peak in overlapped peaks were introduced. Radial basis function(RBF) neural networks were used to correlate the parameters with the area percentage of individual peak and build the model for recognizing the patterns of overlapped chromatographic peaks. Experimental results indicate that the proposed method has good performance with high accuracy and can resolve shoulder peaks in comparing with the conventional geometric method.
Keywords:wavelet transform  RBF networks  resolution of chromatographic peaks  pattern recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号