首页 | 本学科首页   官方微博 | 高级检索  
     


Solving the Neoclassical Growth Model with Quasi-Geometric Discounting: A Grid-Based Euler-Equation Method
Authors:Lilia?Maliar  author-information"  >  author-information__contact u-icon-before"  >  mailto:maliarl@merlin.fae.ua.es"   title="  maliarl@merlin.fae.ua.es"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Serguei?Maliar
Affiliation:(1) Departamento de Fundamentos del Análisis Económico, Universidad de Alicante, Campus San Vicente del Raspeig, Ap. Correos 99, 03080 Alicante, Spain
Abstract:The standard neoclassical growth model with quasi-geometric discounting is shown elsewhere (Krusell, P. and Smith, A., CEPR Discussion Paper No. 2651, 2000) to have multiple solutions. As a result, value-iterative methods fail to converge. The set of equilibria is however reduced if we restrict our attention to the interior (satisfying the Euler equation) solution. We study the performance of a grid-based Euler-equation methods in the given context. We find that such a method converges to an interior solution in a wide range of parameter values, not only in the “test” model with the closed-form solution but also in more general settings, including those with uncertainty. JEL Classification: C73, D90, E21
Keywords:neoclassical growth model  numerical methods  quasi-geometric (hyperbolic) discounting  time-inconsistency
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号