首页 | 本学科首页   官方微博 | 高级检索  
     

基于集成预测的稀有时间序列检测
引用本文:谭琦,杨沛. 基于集成预测的稀有时间序列检测[J]. 计算机应用研究, 2008, 25(9): 2620-2622
作者姓名:谭琦  杨沛
作者单位:华南师范大学,计算机学院,广州,510631;华南理工大学,计算机学院,广州,510640
基金项目:国家自然科学基金资助项目(60574078)
摘    要:为了解决误判问题,从预测的角度给出了离群点的定义,并提出了预测可信度和离群度的概念;同时,提出采用置换技术来降低离群点对预测模型的影响,并提出了基于集成预测的稀有时间序列检测算法。针对真实数据集的实验表明,可信度和离群度的定义是合理的,稀有时间序列检测算法是有效的。

关 键 词:异常检测  离群点  时间序列  神经网络集成

Outlier detection in time series through neural networks forecasting
TAN Qi,YANG Pei. Outlier detection in time series through neural networks forecasting[J]. Application Research of Computers, 2008, 25(9): 2620-2622
Authors:TAN Qi  YANG Pei
Affiliation:(1.School of Computer Science & Engineering, South China Normal University, Guangzhou 510631, China;2.School of Computer Science, South China University of Technology, Guangzhou 510640, China)
Abstract:From the view of forecasting,a novel definition of outlier in time series was presented,as well as the definition of the forecasting confidence and the degree of outlier.The technique of permutation was proposed to alleviate the impact of out-liers upon the forecasting model.To solve the false alarm problem,the forecasting-based outlier detection algorithm was presented.The experiments conducted on the real-world datasets show that definition of the degree of outlier is reasonable and the outlier detection algorithm is effective.
Keywords:outlier detection   outlier   time series   neural network ensemble
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号