首页 | 本学科首页   官方微博 | 高级检索  
     

基于互关联后继树的时间序列相似性查询
引用本文:曾海泉,宋扬,申展,胡运发. 基于互关联后继树的时间序列相似性查询[J]. 计算机研究与发展, 2004, 41(2): 325-332
作者姓名:曾海泉  宋扬  申展  胡运发
作者单位:复旦大学计算机与信息技术系数据库中心,上海,200433;复旦大学计算机与信息技术系数据库中心,上海,200433;复旦大学计算机与信息技术系数据库中心,上海,200433;复旦大学计算机与信息技术系数据库中心,上海,200433
基金项目:国家自然科学基金项目 ( 60 173 0 2 7)
摘    要:时间序列的相似性查询是分析时间序列变化规律的一种重要方法,对于时间序列的分类、预测以及知识发现都具有重要的现实意义。提出了一种基于分段技术的、同时支持可变长度的快速相似性查询方法。其主要思想是:首先依据序列变化的重要点将序列逐步分段,抽取各子段的变化特征,通过分类方法将其转变成符号序列,在此基础上,引入一种称为互关联后继树的全文索引技术,从而实现序列的快速相似性查询,其时间复杂度降到了O(L),此外,该算法还保证在建立索引后查询结果不会有任何的错误丢失。

关 键 词:时间序列  相似性查询  重要点分段  互关联后继树

A Fast Similarity Query Method Based on Inter-Relevant Successive Trees Model in Time Series
ZENG Hai-Quan,SONG Yang,SHEN Zhan,and HU Yun-Fa. A Fast Similarity Query Method Based on Inter-Relevant Successive Trees Model in Time Series[J]. Journal of Computer Research and Development, 2004, 41(2): 325-332
Authors:ZENG Hai-Quan  SONG Yang  SHEN Zhan  and HU Yun-Fa
Abstract:Time series are an important type of data. Similarity querying in time series is a basic task to analyze the changing trend of time series. In this paper, a novel method is proposed, which supports fast search similar pattern in time series. It first segments time series based on a series of perceptually important points, and then time series are converted into meaningful symbol sequences in terms of the segment's features and MATH categorization. After that, a new index model is designed, which is called inter-relevant successive trees(IRST), to achieve fast similarity retrieval in multiple time series. Compared with the previous methods, the method is more efficient and allows different lengths matching.
Keywords:time series  similarity query  important point segmentation  inter-relevant successive trees(IRST)  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号