首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机和距离度量的纹理分类
引用本文:马永军,方凯,方廷健. 基于支持向量机和距离度量的纹理分类[J]. 中国图象图形学报, 2002, 7(11): 1151-1155
作者姓名:马永军  方凯  方廷健
作者单位:[1]中国科学技术大学自动化系,合肥230027 [2]中科院合肥智能机械研究所,合肥230031
基金项目:国家 8 63计划项目 (2 0 0 1AA42 2 42 0 )
摘    要:针对图象纹理分类问题,提出了一种将支持向量机和距离度量相结合,以构成两级组合分类器的分类方法,用该方法分类时,先采用距离度量进行前级分类,然后根据图象的纹理统计特征,采用欧氏距离来度量图象之间的相似性,若符合条件,则给出分类结果,否则拒识,并转入后级分类器,而后级分类器则采用一种新的模式分类方法-支持向量机进行分类,该组合分类方法不仅充分利用了支持向量机识别率高和距离度量速度快的优点,并且还利用距离度量的结果去指导支持向量机的训练和测试,由纹理图象分类的实验表明,该算法具有较高的效率和识别精度,同时也对推动支持向量机这一新的模式分类方法的实际应用具有积极意义。

关 键 词:纹理分类 支持向量机 距离度量 图象分析
文章编号:1006-8961(2002)11-1151-05
修稿时间:2001-11-01

Classification Based on Support Vector Machine and Distance Classification for Texture Image
MA Yong jun,FANG Kai and FANG Ting jian. Classification Based on Support Vector Machine and Distance Classification for Texture Image[J]. Journal of Image and Graphics, 2002, 7(11): 1151-1155
Authors:MA Yong jun  FANG Kai  FANG Ting jian
Abstract:Support vector machine(SVM) is a novel type of learning machine, this thesis introduces the theory of SVM briefly and application in a classification system for texture image, and discusses in detail the core techniques and algorithms, which combine SVM and distance classification into two layer serial classifier. SVM has shown to provide better generalization performance than traditional techniques. However, because using Quadratic Programming (QP) optimization techniques, the training of SVM is time consuming, especially when the training data set is very large. So we have two classifiers combined. Firstly, a rejecting coefficient and rejecting rule are defined. According the rejecting rule, the distance classifier can classify the images and give the final results, or reject to classify the input images. The rejected images are fed into SVM for further classification. The algorithms can take advantages of SVM and distance classification. The experiments show that the algorithms have low error rate and high speed.
Keywords:Texture   Image   Support vector machine(SVM)   Distance classification   Classifier design
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号