首页 | 本学科首页   官方微博 | 高级检索  
     


A quantile estimation for massive data with generalized Pareto distribution
Authors:Jongwoo Song  Seongjoo Song
Affiliation:
  • a Department of Statistics, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea
  • b Department of Statistics, Korea University, 5-1 Anam-dong, Seongbuk-Gu, Seoul, 136-701, Republic of Korea
  • Abstract:This paper proposes a new method of estimating extreme quantiles of heavy-tailed distributions for massive data. The method utilizes the Peak Over Threshold (POT) method with generalized Pareto distribution (GPD) that is commonly used to estimate extreme quantiles and the parameter estimation of GPD using the empirical distribution function (EDF) and nonlinear least squares (NLS). We first estimate the parameters of GPD using EDF and NLS and then, estimate multiple high quantiles for massive data based on observations over a certain threshold value using the conventional POT. The simulation results demonstrate that our parameter estimation method has a smaller Mean square error (MSE) than other common methods when the shape parameter of GPD is at least 0. The estimated quantiles also show the best performance in terms of root MSE (RMSE) and absolute relative bias (ARB) for heavy-tailed distributions.
    Keywords:Quantile estimation   Generalized Pareto distribution   Peak over threshold   Massive data   Parameter estimation   Nonlinear least squares
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号