首页 | 本学科首页   官方微博 | 高级检索  
     


Multi walled carbon nanotubes based micro direct ethanol fuel cell using printed circuit board technology
Authors:R. Imran Jafri  S. Ramaprabhu
Affiliation:Alternative Energy and Nanotechnology Laboratory (AENL), Nano-Functional Materials Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai - 600 036, India
Abstract:Multi walled carbon nanotubes (MWNTs) have been synthesized by chemical vapour deposition technique using AB3 alloy hydride catalyst. Platinum supported MWNTs (Pt/MWNTs) and platinum-tin supported MWNTs (Pt–Sn/MWNTs) electrocatalysts have been prepared by chemical reduction method. MWNTs and electrocatalysts have been characterized by powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), high resolution TEM (HRTEM) and Energy dispersive X-ray analysis (EDAX). The anode and cathode electrodes for DEFC have been fabricated using Pt–Sn/MWNTs and 1:1 Pt/MWNTs + Pt/C electrocatalyst respectively. Performances of Direct Ethanol Fuel Cell (DEFC) with these electrodes have been studied at different temperatures of the membrane electrode assembly at ambient fuel conditions and the results have been discussed. A maximum power density of 38.6 mW/cm2 at a current density of 130 mA/cm2 is obtained. A six cell planar Micro Direct Ethanol Fuel Cell (μ-DEFC) stack was also constructed using these electrocatalysts and etched printed circuit boards as anode and cathode current collectors. A maximum power density of 2 mW/cm2 was achieved when the μ-DEFC was operated in air breathing mode at room temperature. This enhancement of the performance may be attributed to dispersion and accessibility of MWNTs support and Pt–Sn in the electrocatalyst mixture for ethanol oxidation reaction.
Keywords:Carbon nanotubes   Catalyst support   Electrocatalyst   Direct ethanol fuel cell   Polarization characteristics   Micro fuel cell
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号