首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical processing of double-walled carbon nanotubes for enhanced hydrogen storage
Authors:Huimin Wu  David Wexler  Ali Reza Ranjbartoreh  Huakun Liu  Guoxiu Wang
Affiliation:1. Institute for Superconducting & Electronic Materials, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong NSW 2522, Australia;2. Department of Chemistry and Forensic Science, University of Technology, Sydney NSW 2007, Australia
Abstract:Double-walled carbon nanotubes (DWCNTs) were modified for enhanced hydrogen storage by employing a combination of two techniques: KOH activation for the formation of defects on DWCNT surfaces and loading of the DWCNTs with nanocrystalline Pd. The physical properties of the pristine DWCNTs and chemically modified DWCNTs were systematically characterised by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Brunauer–Emmett–Teller (BET) surface area measurements. The amounts of hydrogen storage capacity were measured at ambient temperature and found to be 1.7, 2.0, 3.7, and 2.8 wt% for pristine DWCNTS, 2 wt% Pd DWCNTs, activated DWCNTs, and 2 wt% Pd activated DWCNTs, respectively. Hydrogen molecules could be adsorbed on defect sites created by chemical activation in DWCNTs through van der Waals forces. For Pd nanoparticle loaded DWCNTs, H2 molecules could be dissociated into atomic hydrogen and adsorbed on defect sites. We found that the hydrogen storage capacity of DWCNTs can be significantly enhanced by chemical activation or loading with Pd nanoparticles.
Keywords:Hydrogen storage material  Double-walled carbon nanotube  Chemical activation  Adsorption  Defect site
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号