首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of energy losses in an upflow single-chamber microbial electrolysis cell
Authors:Hyung-Sool Lee  Bruce E Rittmann
Affiliation:Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701, USA
Abstract:We characterized electrode energy losses and ohmic energy loss in an upflow, single-chamber microbial electrolysis cell (MEC) with no metal catalyst on the cathode. The MEC produced 0.57 m3-H2/m3-d at an applied voltage of ∼1 V and achieved a cathodic conversion efficiency of 98% and a H2 yield of 2.4 mol H2/mol acetate. Eliminating the membrane lowered the ohmic energy loss to 0.005 V, and the pH energy loss became as small as 0.072 V. The lack of metal catalyst on the cathode led to a significant cathode energy loss of 0.56 V. The anode energy loss also was relatively large at 0.395 V, but this was artificial, due to the high positive anode potential, poised at +0.07 V (vs. the standard hydrogen electrode). The energy-conversion efficiency (ECE) was 75% in the single-chamber MEC when the energy input and outputs were compared directly as electrical energy. To achieve an energy benefit out of an MEC (i.e., an ECE >100%), the applied voltage must be less than 0.6 V with a cathodic conversion efficiency over 80%. An ECE of 180% could be achieved if the anode and cathode energy losses were reduced to 0.2 V each.
Keywords:Energy loss  Energy-conversion efficiency  Membrane  pH  Microbial electrolysis cell
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号